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FOREWORD

The principal objective of Contract NAS8-20323, "Research
in Stability of Periodic Motions," is to derive exact analytical results
concerning the degree of instability of certain periodic orbits in the
restricted three-body problem. The specialized nature of this problem
required the assimilation of background material before specific as-

pects can be studied. This report covers such material.

This investigation was performed by Lockheed Missiles & Space
Company, Huntsville Research & Engineering Center for the Aero-
Astrodynamics Laboratory of the George C. Marshall Space Flight

Center, Huntsville, Alabama.
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SUMMARY

The stability of periodic orbits of the restricted three-body
probiem is discussed,  Available techniques are presented and the

necessary background material is developed.

The existence of periodic solutions of the restricted three-
body problem is developed from first principles. Starting with
Newton's gravitational law and equations of motion the proof is
developed via the Lagrange and Hamilton equations of motion,

existence theorem for differential equations, the two and three-
body problems.

iv




LMSC/HREC A783816

CONTENTS

Section
FORIEWORD
ACKNOWLEDGEMENT
SUMMARY
1 INTRODUCTION
2 TECHNICAL DISCUSSION

Basic Mechanics

Differential Equations

The Two-Body Problem

The Elliptic Restricted Three-Body Problem
Periodic Solutions of the Restricted Three-
Body Problem

2.6 Stability Methods

(SN oS I WS I oS
(SNSRI

REFERENCES

Page
ii
iii

iv

15
22
33

45
58

71



LMSC/HREC A783816

Section 1
INTRODUCTION

Before a periodic orbit (e.g., one enclosing the Earth and Moon)
becomes uscful for space exploration, we must know something of its
stability characteristics, To be useful, a periodic orbit need not be
stable but rather deviate slowly from the initial or intended orbit, In
this case, we talk about the lifetime of an orbit, This lifetime may be
increased significantly by ""correcting' the orbit periodically, providing
sufﬁcie;mt energy is available, The intent herein is to familiarize one
with the techniques available for determining the stability characteristics
of such orbits and how they may be applied,
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Section 2

TECHNICAL DISCUSSION

2.1 BASIC MECHANICS

The first step in establishing a mathematical approach to celestial
mechanics is the acceptance of Newton's laws, These laws, based upon
observations made during the late sixteenth century and early seventeenth,
have proven to be only a first approximation to Einstein's relativistic laws,
but in fact the inadequacies of the system, so far as celestial mechanics is

concerned, arise as much from the difficulty of the measurement of distance

and time as from the relativistic connection between the pair.

We begin, then, by assuming the concept of time, and take as its measure-
ment what is known as ephemeris time rather than universal time and define
absolute space as any space in which Newton's laws hold, To be rigorous, then,
we have divorced ourselves from the real worid, even though we do not know
just what is the real world, but, if we note that the advance of the perihelion of
Mercury is some 43 seconds of arc per century, we do not feel that we are so

far removed from reality that our approach is useless,

Now briefiy, Newton's second law states that for constant mass, the
product of the mass and the acceleration is equal to the applied external force,
This gives the familiar equation

m.r. = F. (i=1...,n) (1)

where n is the number of particles in the system,
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His gravitational law allows us to compute Fi' It states that the force
between any one body of a system and a second body is directly proportional
to the product of their masses and inversely proportional to the square of the
distance between them, acts along the straight line joining their centers and
is independent of any other forces acting. This allows us to write that the

force, Fij acting on the ith particle due to the j particle is just

= -y m, m, . (2)

where ry; is the position vector of m; relative to m; (i.e., rij = T - r:),
i T being the position vectors of m; and m;, respectively, relative to some
arbitrary origin, The total gravitational force on the ith particle is then

r, - r,
i
F, = -ym, m‘j —J—§ , (3)
jéi 75 )
and Newton's equations of motion become
r. - r,
m. ¥, = -ym, m, —l—21_ (i,j = 1,...,n). (4)
P ' Tyl
i S

Now we may show by differentiation that the force Fi is a gradient of

a scalar function, By way of definition, we write

Fi = -gradriV (5)

where gradr V = (VX » V., V ). V is called the potential function or

. . Z.
1 1 Yl 1

potential energy, and we see that
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1 1
V=‘7’§E:;>-:mj‘l-r;__‘-;;- (6)

i jfi

We define the kinetic energy T to be

1 .
T = 2- rni ri . (7)
i=1
The ten classical integrals give us the preservation of linear momentum,
angular momentum and total energy (T + V), The first of these allows us to
take the origin at the center of mass of the system without changing the form

of the equations, which we shall do,

Before continuing with the derivation of the two- and three-body problem
from the general n body problem, we shall discuss the Lagrange and Hamilton
formulations as equivalents to Newton's equations of motion, The power and
usefulness of these formulations will be demonstrated in later sections.

We define the Lagrangian

L=T=-V (8)

and see that

and
8L _ _AaV. . I
9x. = 9x Yy my j 3
=1 i - lg_c - X
J;ﬁ J 1
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. = X. Ly Z. and 1, = 1,00.,n,
for .’.‘1 1' yl' i ' J » LY

We have then
d (0L oL
a‘t‘<a>'2."> "= - 0 (9)

To make this more general, we consider a non-singular transformation of
the X Voo 25 (i=1,...n) to what we call generalized coordinates q‘j . Now,
we have 3n cartesian coordinates, so we require 3n generalized coordinates
Clj ’
to be non-singular, Let us consider a transformation of the form

provided no constraints are placed upon the motion, for the transformation

l{i = Ei(ql’...’q3n)' (i= 19--.“) (10)
then
E
L = L (qlg---- Q3n)-

We shall prove the form of the equations is invariant by direct evaluation,

The first term of Equation (1) is

ok s %
%
g_<aL >_ d on, 0% YL 8%\ afxeLn %
dt \9¢q. / dt 9%, 0q. 9x. 9¢qg. |~ dt 9k, 94q.
qJ i ! qJ ;1 qJ i 1 qJ
since x. is independent of the Qg s and
. s 5 i
aL™\ _ NaL 2% Sk i
3qj — O X, aqj 9%, 0q
i i
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% &
d <€1L*> _aLt Z_g_(zm) % yoaL _g_< %
dt aqj BqJ dt agi Bql 851 dt qu
¢ e
ox; dq z % g

The 1lst and 3rd terms of Equation (11) combine to give zero on using Equation

{(9) on the following fact:

i * * ® . s
Bxi B dxi 2 Z Bxi Q- 8xi Bqa } axi
9. ~ 98q. dt =~ 34q. 7] a - 0 9q. = 9aq.
qJ qJ qJ - dq = 9 qj qj
*

ie., 8x,  0x

=i i

9 4 T 9q.

9 %

Also using the above fact and a reversal of the order of differentiation allows

a cancellation of the 2nd and 4th terms, Substituting these into Equation (11)

gives

afaL* 9L _
E{<8qj> oq; " H

i,e., the form of the equations is invariant, We notice, in general, that the
*

system is notfirst order, for I, contains a term qz and so d%—(%’—-—) contains
a

a term .

On introducing the Lagrangian derivative

g =df2 ). o
x.,  dt |9k, ij'

J J

we may write Equation (12) as

L w =0
J
6
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The next step is to introduce the Hamiltonian system, We define the

canonical momenta p, by

o L .
Pa = 3, (a=1,...,n) (13)

Now we put

Y Palq - L (14)

o
where we consider H a function of py, q4 (@ = 1,...,n). This is accomplished on
solving Equation (13) for qa » and substituting in Equation (14). We denote L

as a function of p,q by L¥,

Now

AL
ZPB Bqa Zaqﬁ 8qo, ) g, -

The first and second terms combine to give zero, and the third term is just

d 9L . 9L
- a—ga—(ﬁ—a by’ Equatlon (9)- But 'ﬁ'— = Py and so

a
an= -i)a (azlpunnyn)
Now we consider
8
L
Hp, = % " Bp Z
B
£ 9 q . 9q
Now aL_ ZGL 1) no second term, sinc B -
Pa —%4; 9pq 9pg
i
oo H =
Py 9a .
We have then, the 2n equations
7
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O
1]
Cal

et

(¢=1,...,n) (15)

to describe our system, These equations we call Hamilton's equations of
motion, or sometimes, the canonical equations of motion, Providing we
rostrict oursclves to nonsingular transformations throughout, we can return

via the inverse transformations to our original system of Newtonian equations,

Invariance of the Hamiltonian Equations

We define a canonical transformation of the variables Pa» g (a=1,...,n)
as one which preserves the form of the Hamilton equations, We now rename
our variables, which is in reality an identity transformation, and consider a
system of the Hamiltonian equations

x, = H
! Yi .
(i=1,...,n). (16)

i = ° Hx.
i

We define the column vector z with 2n elements z; (i=1,...,2n)
by z. =x., zZ.
Yy j 5

Jjtn
z to { with {; = §; and §{;;, = n;(i=1,...,n) may be written

=Y, (j=1,...,n)., Formally then, the transformation from

z = 2% ({,t). (17)

In order to ensure the existance of the inverse transformation, we require

the matrix of partials

_ - (s _ Xé Xn
M=oz = (d)) = (Y€ vn (18)

to be nonsingular, OQur last preparatory step before transforming the

equations is to introduce the 2n x 2n matrix J,
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0 I
J =
-1 0
where I is the n x n identity matrix, We notice that

[

We may now write our equations of motion as

z = J'Hz. (19)
where H, is the column vector with 2n elements HZi = Hxi , Hzi+n = Hyl
(i=1,...,n)

Now
%
2n Bzi 5%
=), 5‘;‘34‘5“‘5‘{‘ i=1,...,2n)
i=1

where the * quantity denotes that it is considered a function of ({, t), But
the first term on the right hand side is just the ith term of the column vector

M'lf . We may write, then
. "1 *
z = M (. (20)

The general term H, must now be transformed. We have
i

¥ 84‘
= OH 9H  _j |
Hz. T 9z, E ( 0z
i i i
J
9¢.. a¢. *
E 5;-7- is the ith element of the column vector <'5;'l> H: ,
j 1 1

and ;z is just (z;)-'= M~ and so Equation (19) becomes
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%
-1 %K
M = gMTH - 2E
" * (21)
st =MIMEHE - -g-:-

To preserve the form of the equations, we must be able to write in the

form

(= JII I (22)
We now equate the right hand sides of Equations (21) and (22) and multiply through
by -J to give '

T

~ # *
H; = ~-JMJIM H:-i—.]'zt.

. * . . % .
Clearly, if MJMT = J and -Jzt is a gradient, i,e,, =-J z, can be written as

R;, then we have

~ %
H=H -R,

If our transformation is conservative, then z, = 0 and

~ %
H=H . (23)
SRS *
We have shown above that M "JM =J and -J z, a gradient is a
sufficient condition for a transformation to be canonical, Before proceeding,

we should note that in the literature, we frequently find that a canonical

transformation is defined somewhat more generally by
T
MIM'® = uJ (24)

where # is a constant different from zero, and the case, 4 =1 is called

symplectic,

Now that we have this result, we prove the following interesting result,
namely, that every function v = v (x, ) generates a simplectic trans~

formation, y = v

<’ £ = vy, provided det (VTIx) 2o,

10
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When we say this generates a transformation, we mean that we solve

¢ = vy for x, hence the condition det (vﬂx) # 0, and write

x = @(&n) 25)

and substitute for x in y = v_, to obtain

y = Y&, n). (26)
Now to prove this result, we note that

T (,f)e V’n 0 I (/)e (Pn
'//6 'l’n -1 0 "'e 'l’n

W) (o) + ton)T Wy - )T (o) + (0T W)

(27)
W) () + @p)" (W) =) (@) + (Pn)T (D)

We must prove that the final matrix in Equation (27) is just J,

- From Equation (26), we have, on taking the partial derivative with respect

to ék

n
wké\, = vaer (PreJ (jyk=1,...,n)

r=1

which is just the element in the kth column of jth row of kqu?e, and so

Ve = v % (28)
Next consider
n
3 = v (bk=1,...,n)
keJ rZ:I ﬂer ré
which is the k,j element of
I = 66 = an(p€ (29)
11
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where I is the unit matrix of order n, This gives us (/J5 and, on using
Equation (28), d/€ . Now, our new coordinates are €, nn and are inde-

pendent, therefore, using arguments similar to the above
0 = €n=vnx<ﬂn+vn€, (30)
and, on considering u[)k (k =1,...,n), we derive
l//rl = Vex P + v, (31)

Using Equations (28) through (31) to evaluate the final matrix of
Equation (27) gives

1)

W (o) + 0" W) = (v ) @) + (0T v gy = 0

since v__ is symmetric,
XX

- (o + (0T (W) = -0, v @ +v_1Tv ¢ +v'1Tv = I

§ n & n E "xx'n Nx ‘xx ' N nx xn

since v is symmetric,

xn

T T . T _ LT T
S () {op) + (0p)" ) = - (v, 0p) Py Ve Pn ) Vi Py

T
+ (pn va = 0

Now fk = vy (v, n, t), but this has to be true for all systems of

k
equations and at all points, so the partial derivative of Ek with respect to

time is zero, i,e,,

0 = Zvner (prt + vnkt (k=1,..., n).

But this is just the kth term of the column vector ¢ + v = 0,

mx Tt T Vit
A little matrix algebra and use of the condition det (vqx) £o gives

LD |
Yy = vnx Yt -

12
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Now

‘l’k =V ((Pv n, t) (32)

*k
but !/lk is a function of x, n, t, and so we must write

) = v @, + v (k=1,...,n)
kt ; xer rt xkt

and this gives

l"It: = Vxx(pt + v‘xt:' (33)

A brief review is probably in order here so that we realize clearly
what we are attempting, We have a Hamiltonian system
z = JH_,
z

»

which we are transforming to § = J G: by the transformation

nk, v = vi{x, n7,t), det(vnx)?{ 0,

which implies

X = ([)(e, n, t), y = w(f- n, t) .

By direct substitution, we have {‘ = Jﬁc - MTJzt. We wish to show
_ T
that Vt{(('o' n,t)y = M Jzt.
We have at our disposal
| -1
P VoxVne Y T Vex %t Ve
which gives
vy
nx! Nt
z, = |-..C- Lo eeeao - .
t i
v -1
Vxt 1 Vxx vnx Vit

13
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Next, we see that

n
\'4 = v )
teg 1;1 txr rEJ
n
vtn = Vi (’Orn + htn
J r=] r J
8o that
v . = Vie _ Pe Vix
t v ) T v, + v
tn PnVix T Vin
T T T
vy Y 0 I -
T T - _uT T
T T -1
T _ (Ve 2 [vay Vit
MiTey = Ny T ) -1
n n Vxt T Vxx Vnx Vit
T -1 T T -1 T
- wf V’?x v’?t + (pé th - (’D€ Vxx vﬂx Vrlt - (pé vxt:
T -1 T _ T -1 T
Yn Vnx Ve b n Ve T 90 Vax Vix Vne D Vix ¥ Vep
= vt;
since (/7'2' Vex = (vXX ('Df)T = %(Vx (¢, 1, t))T = q/l’g and from Equation (31),
T -1 _ T -1
¢’,7 Vnx Vnt T (vxx (pﬂ + erl) Ynx Vnt
T -1 T -1
= (ﬂnvxx lex VTIt + Vxn vnx vnt .
14
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We have also used that qu = v']x , @ symmetric matrix, OQur final
result, then, is that
y = v (x' n’ t)' e = v (xl n! t) (k= 1't¢l|n)
k X k nk

defines a canonical (symplectic, if we allow H ,4 1) transformation, such

that the new Hamiltonian is
G = H ((ﬂ(eu '7, t)v w(ei ’7! t)v t) + I{t((/)t d}! t') .

This method of generating a canonical transformation will be used later
in the normalization of the Hamiltonian, We notice that v(x, n,t) is

arbitrary, provided v exists and is nonsingular, In particular, we may

nx

express v(x, 7, t) as a convergent power series in x, 7, In our later studies,

we shall generate the power series termwise in the hope that is is convergent,

Thic concludes our discu ssion of fundamentals of mechanics,

2,2 DIFFERENTIAL EQUATIONS

We now wish to prove an existing theorem for differential equations,
Not only will we prove the existance of a solution, but give a construction

of the solution which is readily adopted to numerical computation,

Let y=Ayjreeesyph yGCn and let f(t,y) be a vector with elements

functions of t, and again f{(t, y) €C". We define the norm of a vector y as

M= e, Pl

a definition that satisfies the four requirements
Ilzo sl = 0sox = 0. [lxeylls|Wl 4l ana e >{lenl] = Jd bl

where C" denotes the set of all continuous functions with continuous derivatives

up to and including the nth.

15
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By the differential equation

y = £({t, y) (34)
we mean the n first-order differential equations

}'fj = fj(t‘yl'..‘,yn) [ (j:I'-oa'n)o

With the prececding definitions, we may now state our theorem:

Let f(t, y) be continuous and uniformly Lipschitz-continuous with respect
to y in B: tC{, “y - yo“ <b, where { is a rectifiable curve of Length 1,
and llf(t, vl <M on B and ML <b, Then y ={(b, y) has a unique solution
y = y(t) on § with y(t)) =y, .

Before proceeding with the proof, we consider briefly the implications
of some of the requirements, The Lipschitz condition with respect to y, or

as we have called it, uniformly Lipschitz continuous, it that

e v - s y*i] < x - v o)

for t, v, y*, c B, where K is a constant independent of t, vy, y*. This means

that for all tc(, vy, y"‘cB0 = ”y - Vo” < b (we call B, a ball center y,

radius b, and by = we mean a defining equation)

eee, v) - £(t, y9)ll
ly - v

is bounded, y # y* of course, The Lipschitz condition is satisfied if

fy = (fk Yl) exists, in which case we may write
* 4
e ) = eyl <y - A max e ]
B
for vy, y* €B,. We must now define what we mean by the norm of a matrix,

Let y be an arbitrary vector, such that Hy” < 1, Then we define the norm

of a matrix M as

]| = max |y | (36)

We do this, since we would like

o] < ] - Il = vl < elJo (37)

16
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where M and N are matrices. Some obvious ways of defining the norm of

a matrix do not satisfy this condition, for example NMU = max Imijl does not,
' i

We should show that ||x||, x a vector, has the same value under the definition

of norm of a vector and as nx 1 matrix, this is obviously so from Equation (37),

To prove the theorem, we begin with defining

Yo (t) = ¥,
and

o 7o ¢ ) @ ez e

to

where ,‘!f denotes that, the integration path is along the curve £, Now

P18 = Yol S ML b if y () € B (v, b) Dy, (t) €B (y,. b)

Further, all the y, are continuous on £ . We will now prove by induction
that

n n+1l
|Yae1(®) = v, <M 1{-(—&;—}—.——— (39)

a statement which we denote by 5 , and L{t) length of that part of &
from t, to t. Since

”Y1 - Y“ <” éf £(t, v, )dt“ < ML(t)

Equation (39) is true for n = 0, We must now show that if S ' then S nti
To prove that such is true, consider

Vs = v(0) = []:,9,6 L£G v (1) - (. y 1“))} atl . (40)

Now dt is a curve and so by def1mt10n it has a parametric representation,

Vtef, t=t(x), 0<T<1 The right hand side of Equation (40) becomes

“ﬁ(t('r); y(em) - £(tm v, (1) € (n) dt";—: nln say . (41)

17
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where the upper limit |7 of the integration is the value of 2 such that
t{(z) = t. (This would be less confusing if instead of ¥ under the integral

we used a dummy variable, ot , say,

Now we have a real integral and so we can apply the estimate appro-

priate for the norm of such an integral and obtain

it = Sl 7 = )] o

where t = t(?). Hence applying the Lipschitz condition and Sn,

dr

T -
[ < & Sm B wmr eer e
o

But d_IigﬂIlZ. dr = ds = ‘t’('r)l dT so that

aT

T )
“1” < M -Ig- f L (r.(r)) dL(t(r)) = M E%F Lyt (42)
(9]

We have then, that

Kn

i ® = va®f| < M Gy Lo (43)

i,e.,, S and our induction proof is complete,

nt+l’

We now use this result to obtain that

o0 00 KnLn+1
Z(ynﬂ(t) - Yn(t)) < M ZO——-—-—(MI): (44)

n=0 n=
o0

so that Z (yn_l_l(t) - yn(t)> is uniformly and absolutely convergent for

n=0
y . t €B., Now consider the partial sums of
n

o0

PO = vyt D fm® - 7,00) (45)

n=0

18
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which are just yx. That Equation (45) is absolutely and uniformly convergent

implies that yp(t) — y(t) uniformly, and so, since f{(t, y) is continuous, this

implies that £(t, y(t)) “";ir:’rgl £(t, y(t)) . Finally, since
lim f g, (t) dt =f lim g (t)dt = f g(t) dt
n—son of L. 1 —>on i

holds for g, (t) uniformly convergent to g(t) on & , we have from

t
lim yn+1(t) = lim (Yo + i f(t, yn(t)) dt )
that
t
yit) =y, + f £{t, y(t)) at.
t
o

Since for t € £ we can write t = t(T), T € R, the derivative y(t)
exists and y(t) = f(t, y), so our solution satisfies the equation we started with,

More generally, if we have

w

Jf(z)dz = g{w),(z, z,, w€C),
Z

we would require that f{z) be holomorphic on some simply connected domain
/, . . . .
D for g(w) = f{(w). We do not require this since we confine t to a curve

t = t(T), teR.

We now consider the implications of supposing that f(t, y) is holomorphic

first of all on :é: ' "y - Yo" <b } = B. B is a closed bounded set and so

f(t, y) is bounded and the partials exist and are bounded on B. We can then
dispence with the Lipschitz condition and our results hold, Now suppose

f(t, y) is holomorphic on lt - to‘ <r, “y - yo“ < b, then £(t, y) is holo-
morphic on every curve in lt - to‘ < r and for “y - Yo“ < b, in particular

on every radius of lt - to‘ < r, Therefore, the solution exists on ,t - tol <r

and is holomorphic and therefore is unique, The solution has a power series

19
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expansion in {t - t_), and it is possible to establish this in the form of a
Taylor Series which is convergent in the circle ‘t - t0| < r atleast,

Further, the solution can be constructed from

t

yn-f-l(t) = yo + ¢ f(t’ yn(t)) de .

t()

We can idso usce this solution to estimate how far y deviates from
Yo in a given time. We have seen that y,(t) C B,, so the solution satisfies
l]y - Yo“ < b provided t € &£ . Now, in general, we want as long a time path
as possible, but we have the condition ML < b to be satisfied so that we
must ensure that M is as small as we can make it, and then we have that
b is determined from ML <b, To ensure that M is small, we subtract off
the principal parts as in the perturbation theory of n-body problem, We
have then that the solution deviates a distance < ML from the initial point;

this is the sharpest approximation available,

We shall now consider a set of autonomous differential equations

y = f{y).

Any non-autonomous system can be written in autonomous form as follows:

let yni1 = t and replace y by ¥ = (Yjseevs Yoo Y1) @nd £ by = (£, cou, s 1),

Then the system of non-autonomous equations becomes

y = 1.
Now, consider the system
x = f(x)

with a solution x = x(t) holomorphic on a curve § less its end point
o
t . t, is the initial point. Let K be the set of

all x = x(t), t € £ - t*, Assume {(x) is holo- /’L
morphic on a closed and bounded set s € c”, which €o
contains K, K C s, Note that K is not a curve

under a rigorous definition, since it has no end

point, We shall refer to it as a curve for sim-

plicity, K is called the trajectory for the initial (4/_\’(6*
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conditions t,, x,. The trajectory is contained in the set s, We shall now
prove that x(t) is holomorphic at t = t*, hence also holomorphic in a

. % e
neighborhood of t* and therefore continuable to t , This proposition is

known as the Theorem of Poinlevé.

Holomorphic on a set =) holomorphic at each point of the set, To
be holomorphic at a point, a function must be continuous, as a function of
all variables and the partial derivative of the function with respect to each
variable must exist, By continuous as a function of all variables, we mean
that V € > 0, 36(t, x*) s.t. u i(x) - f(x*)“ < € whenever ux - x*" < 4.
It follows that a Taylor series expansion exists in the neighborhood of t*.
which is a multiple power series in the components of x, and each component
of f can be expanded in this manner, Since {(x) is holomorphic on S, then
to each 0 € S, we can associate an open ball B(g, r(o)): nx - a“ < r{o),
r{(o) > 0. Further, f(x) is holomorphic in B(a, r(o)). We define V

R = U Bo, r(o),
gES

and notice that R is open, We have then an infinite open covering of S and
may apply the Heine-Borel theorem to obtain a finite open subcovering, We
note that B (a, %‘r(a)) is also an open covering, and again from this, we may
choose a finite subcovering by the Heine-Borel theorem, Let us denote by
aj the centers of the chosen balls that form this subcovering, (j = 1,...,N),
with N
U B(o., %r(a.)) 2 S.
j=1 J J

Now take an arbitrary point ¢ € S =9 aj' 1 < j < N such that
1
Blo., 2r(0.)},
g€ ((TJ zr( J))
which in turn implies ‘
B[a: %r(aj)] C B(aj; r(aj)) C R,
i,e., the closed ball center o, ua - ojn < %r(oj), of radius %r(qj), is

contained in the open ball center aj and radius r(aj). We define

21



LMSC/HREC A783816

r = min r(o.) > 0
j=li...,N Y

and take the ball
B [a; r] CR.

f is holomorphic in R and hence is holomorphic in each B[o;r] . We have
now gct up the reguiremonts for our existance theorem to hold, Our r re-
places the b of the existance theorcim, {{x) is holomorphic in “x- on< r,

0 € S, S is closed and bounded, The norm uf(x)“ <Min U Bfo;r]
oCS

so that we may choose L, = r/2M to give ML = r/2 < r(Z b).

We now choose tl€ & such that‘t1 £ t*, and dJi (tl, t*) < L.
The point x(t,) €5, and so it exists up to t;, Using this x{t;) as ¢ CK Cs,
the initial conditions or initial point of a solution with t; instead of t_, we
may apply ‘our existence theorem and so obtain a solution along K for a
iength L < r/2M. We may choose L = r/2M, and so we have continued the

) %
solution at least as far as t and the theorem stands,

2,3 THE TWO-BODY PROBLEM

In our proof of the existence of periodic solutions to the restricted
three-body problem, we shall require what we call "starting solutions,’
Frequently, such solutions can be obtained by putting the smaller of the
primaries equal to zero and thus obtaining the two-body problem, Then
by analytical continuation of the solution in 4, the mass of the smaller
primary, we obtain periodic solutions for the restricted three-body prob-

lem, In the following paragraphs we shall be more explicit about this,

In Euclidean 3 space, the problem of two bodies is defined by the pair

of differential equations

km;m,(§, - 51“12

3
—
Laasd
—
1]

(46)
-3
km m, (¢ - §5)r;5

3
(3%
et
[y¥]
H
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where, at time t, the point masses m,, m, have position vectors 61, 62'

respectively, and r, = 51 - 52 is the distance between the two mass
points, Adding the pair of Equations (46) leads to the conservation of

linear momentum, namely
m1 El + m
which integrates to
mlel + m2€2 = const, = yl.' say . (47)

Integrating again gives

i

ml€1 + rnzﬁ2 '}'lt + )’2 = m&

—

where m = m, + m, . The motion of the center of mass § is, then, one of

constant velocity on a straight line,

We now transfer coordinate origin to the particle (point mass) m;.

To this end, put

§ = 62 - 61
so that we obtain the single equation from Equation (46)
v -3
£ = -kmér (48)

where r =71, = lsl - 62' = lﬂ .

The problem defined by Equation (48) is more correctly referred to
as the Kepler Problem, The relationship between the solution of the two

problems is

m£2=)’+m16, m€1=)'-m2§

where Y = )'lt+ 75

. 2 2 2
Now § is the vector (x17x2)x3), so that r = \) 3 + X, + X3 and

Equation (48) is, in fact, three scalar equations
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X, = -Mx.T i=1,2
%5 Hx, x ( » 3)

where U = km, so that the Equation (48) is not trivial, We commence our
search for a solution by forming the vector product of Equation (48) with
¢ to give
z x & =0

which integrates to

é x § = const, = C (49)
since é X E = 0, Egquation (49) is known as Kepler's Law of area, Forming
the scalar product of Equation (49) with § gives

0 =C.t=>c k¢ (50)

on using the cyclic law applicable to the triple scalar product & x § . ¢,
Equation {50) states that the motion is perpendicular to a fixed (constant)

vector and is, therefore, in a plane,

Now consider

Il
=
wl‘"*
W
e
ST .
»
U

= Cx§& = -aE(C x &),
Integration gives us immediately
u-ﬁ- + é x C = P = const, {51)
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Taking the dot product of this equation with & gives
ur + £+ ¢ x C = p-¢
and therefore

ur -p-¢ = G

Now, éep =1 lp! cos® and so Equation (52) becomes, on soliving for r,

r = CZ
M - ]p|cos¢
c®/u
1 - -’-QL—cos¢
m
which is of the form
P
S cos¢ °

The equation of the orbit is that of a conic section. If € < 1, r is bounded,
giving an ellipse (or in the case €= 0, a circle as a special case); if € =1,
we have a parabola, and for ¢ > 1, a hyperbola, We notice that the coor-

dinate center is at a focus,

Notice that the motion is on a straight line if and only if ¥ = 0 since

§x & =7Y=0 0 that 6 is in same or opposite direction to §,

We wish to obtain the position of the particle in its orbit as a function

of time, However, this can only be accomplished formally as follows:

»

(52)

represent £ by réo where eg = 1, differentiation of the latter gives fo-é =0

so that é: réo + réo , and hence
y=Ex§ = x7¢ x¢

(Note, using ¥ for C of Equation (49),) or

25
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2 .
HIERSIAE (53)
Now we may write
_ . _ iy
50 = u cos® + vo singy = e

so that eo = i(/; ei(/), and ,eol = ICPl

Therefore, on substituting into Equation {(53), we have
2 | 2 -
7] = o] = £x%6.

Now assume )’aé 0 , which implies

%
+1 2
= d
t=gmr ) T
V=9,
and so ly3l @ i
t = +—— /(1 - €cosy)” dy (54)
Toou
Yo

from the interpretation of Equation (52).

The solution is periodic if 0 £ € <1 in which case we can obtain
2m

f(l = fCOSd/)-Zdw = 2m(l - 62)-3/2

o

which holds for all complex € such that € < 1, The period T is then

-3/2

3
T = Zn'l—)-:zl—(l - €) (55)
u

for elliptic motion,
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We define the energy as

1:2 u
28 %

where we use = to denote a defining equality, Then

h

m

ho= b8+ bi = 88+ Lodoy
r r
§

since r = \/ez , and 80 T = f?_ Now scalar multiplication is distributive

over addition so that

h = e.(gu.%) =0 (56)
r

which implies that h is a constant along a trajectory, Such a constant of
the motion is called an integral, e.g., h is an integral as is each component

of §x ¢, Now onusing & = rfo and Equation (53), we have that the energy

h -é— (i‘z + ‘)'zr-2> -
Now h < 0 implies that the trajectory is bounded for, suppose that

it is not, then h —1/2 +2 2 0 for real *, which is contrary to the

supposition that h < 0, Hence, h < 0 implies that the motion is bounded,

i

The converse is also true, namely, if the motion is bounded, then h < 0,
To prove this, we consider the two cases: (1) the elliptic case, 7 £o,
(2) the linear case, ¥ = 0, For case (1), we have ¥?# 0 and

_ y2o-2 _ 24
2h = ¥Y°R =

also (57)
2 42 _ 24
= ré 472 | 2K
2h =7 !

where R and r are the maximum and minimum values of r, i,e,, when

r =0, Define 2a =R + r and so
1 1 2 (1 1
w3« (4 - )
* R ? R

27



LMSC/HREC A783816

or

culRo ) |2 R% - 42
tR - .2
which implies that

2UTR = 7% 2a . (58)

Starting again from Equations (57), we multiply the first by R and the
second by * and add to give

2L(++R)=}'2§+%: —
2 2a
=YY % - 4H
= 2l

on using Equation (58), Now R +* = 2a, and so

- - M
h = 2a<0

Incidentally, we see that the energy is a function of the major axis
alone and is independent of the eccentricity, € . For the second case, we

have that y = 0 and the motion is confined to a straight line, hence

T -

.2 u
T

Since the motion is bounded, r reaches a maximum value where r = 0, and

hence

u
h = - = < .
R 0
From these considerations, we see that the motion is unbounded for h 20,

We have already noted that the motion is planar, which allows the
motion to be represented in the complex plane. This representation is
preferred over two-dimensional vectors for several reasons; one, of course,

is the difficulties arising from vector multiplication, However, care must
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be taken in the complex, for example, ‘él;f \Jéz but = EE. In complex

notation, then

§ = x, + ix,

and we define a transformation, in the complex, by
f = u® | (59)

which gives x; = u? - ug, X, = Zulu2 as an equivalent definition of the

transformation, ,

We now define the new time variable s by

) dt
- f ey (60)

l By the superscript / we mean the operator d/ds and by the ¢ over, we

mean d/dt . We further define v =1u, so that r = ‘5\ = uv, Now for any
s

1

dz _dz ., _ dz 1
r

function, z = z(t), e =gt or z = z’. Using this,

. . ’ ’
§ = 2uu = 2u Er- =2 %— , and the second derivative with respect to time

-I’h.'
i
)

1

The energy h transforms to

h = 2 —~—— -

or

huv = 2u'v’ - u.

The equation of the motion becomes, then,
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E = (2vu” - U4 - huv)/uv3
u2
= -Hu
(uv)
which implies
2uv” - huv = 0,

If we do not have a collision, we can divide by v to give

" h
u = >u (61)
which has the solution
u = ccos{ws + B) (62)

where ¢ and B are constants (complex) of integration and w = \/-_75-,
which is real if h < 0, and purely imaginary if h > 0, Since c and@ are
both complex, each is equivalent to two real constants and @ = \/-h/z makes
five constants in all, However, only four are needed since Equation (61)

is equivalent to two real second-order equations. We must have, then, a

functional relationship among h, ¢ and 8. This is just the expression we

obtained for h, namely,

huv = 2u'v - u, (63)
From Equation (62), we have

/

u’ = -cwsin{ws + B)
and
v = u = Ccos(®s + B)
since s is real and @ may be purely imaginary, Also, v/ =0’ = -T&sin(®s + 8).

Substituting these expressions into Equation (63) gives
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This allows the calculation of, say, the real (h < 0) or imaginary (h > 0)

part of B in terms of h and c. We have one case left, h = 0,

For the case h = 0, we have u”= 0, andso u=as + 8 and ¢ = (0s +B)2,

w =@ v/ =0, and so U = 2@ is the required relationship, In the general

case, h ;! 0, we note that

2
c

§= u = czcosz(ws +B) = 7—-(1 + cos(2ws + ZB)),

We notice that the motion is on a straight line when both ® and B8 are

either real or purely imaginary, In the neighborhood of 5+ We may expand
§{ as a power series in (s - sl):
e.e]

§ = c (s - 5"

n=4

This follows trivially from the fact that cosine has a power series

expansion, If h = 0, the series reduces to a single term of the 2nd degree,

We have, now, a solution as a function of s that holds for all u ;( 0,
or equivalently all & £ 0. Our problem is this, can we analytically continue

the solution to § = 0, We can mathematically, but physically, we have lost

the meaning of the solution,

We proceed from Equation (62), remembering that § = uz. Foru=0,

and hence £ = 0, we must have
= I
u)sl + ﬁ =3

and the expansion of u becomes

00

~ 2
(s - sl) Z uzn(s - Sl) n.
n=0

00
n
s s Tyl - oy
n=1
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This is so since cos(n/2 - s) = sins, On writing

00

¢ = (s - sl)2 Z c, (s - sl)zn

n=0

we see that £ has a zero of second order at s = 8

t 8 s
Now we defined s = f E];L- so that t = f rds = Juvds . We must
o) o 5y
determine the behavior of the integral for t near 8y Now, t:1 =f uvds,
o
and so
5 5
2 & 2n
t-t1=/uvds=/(s-sl) Zan(s-sl) ds
n=0
51 55

which, since it is a power series, it is uniformly convergent within its

radius of convergence and can be integrated termwise to give
o0
3 . 3 2n
t - t, = (s sl) nz_:obn(s sl) .

.
This can be invented, formally, to give
3 /
n/3
s-sl=nz_ldn(t-t1) .

/3

This is a quasi-power series in t - ty which becomes, on putting (t - tl)1

a power series in z, Hence

e 2o (-t

n=2

We see then that § is continuous through the collision at time t = tl’ since
for a collision & = 0. Although we have found that the solution to the Kepler

problem is continuably through a collision, this function cannot be said to

32
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satisfy the Kepler equation at § = 0, In fact we do not claim this, but just
that the solution as a function in its own right is continuable through § = 0,

We notice that (t - tl)l/3 is continuous at tl if considered as a function
of a real variable, however, when considered in the complex, it has a singu-
larity at t = tg. From the known behavior of Ef;v—at the origin, we recognize
the singularity as a branch point of order 2, in fact, then, an algrbraic branch
point, Notice that the derivatives, z = 1/3 (t - tl)'2/3, of z = (t - t1)1/3 with
respect to time t becomes unbounded at t = t1 . The time derivative of § is
)'1/3 t+ ..

2
$ = '§'e4(t't1

which is singular at t = tl.
2,4 THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM

The equations of motion of the three-body problem are given immediately
by Equation (4) on putting n = 3; at the same time, we change notation to

8k = Xk (k = 1,2,3) to give

. m,
'qk = ; T(q_] - qk) (k=1!2’3)o
jFk rjk

’

Now the equation for k = 3 is

. my m,
q3 = =3~ (q; - d3) + 5~ (q; - q3) (64)
13 . T23

which we notice is invariant if we allow m3—’0. In the limit, the equations

for k= 1,2, become

3

. 2
q; = 35— (4 - q;)
12
(65)
m
Q@ = 3 (9 - )
12
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respectively, which are the two-body equations of motion, We may choose as
the solution of Equations (65) any of the Keplerian orbits but restrict our-
selves to elliptic and circular since these are non-degenerate periodic solutions.
If an clliptic orbit is chosen for the relative motion between m, and m,, then
we have the elliptic restricted three-body problem, and if the relative motion
is circular, then we name this the restricted three-body problem, We shall
develop the elliptic case and, when appropriate, rcduce it to the circular

case,

Our first step is to normalize the mass so that m; + my =1 and so

obtain

d, = -9, lq0|~3 (66)

where 9 = 42 - qps 9 = "M,Q5, Gy =M gy, my +m, = 1, and the origin
of coordinates is at the center of mass, For the third body, the one of

insignificant mass, we have

m m

. 1 2
g = =3 (q -a +—5 (g, - q (67)
r r
1 2
‘We represent qg bY
Z
1 -€ is
9 * T=€coss ° ' (68)

where

s
t = (1 -62)3/2f(1 - €cose) ? do,
[0/

which we now show is a solution of the two-body problem, We define

z, = ﬁmaoéo, z, = 1z . z, = arcq_, z4 = -arcZ (69)

where

-1 .
Z = R Iq{ol + 12,9, .
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Further, by r we denote

qoland 80

and so Re (EOZ) = T, otz . Now, from the definitions of z, and Z4r We
have
iz
4
Z = Z, e
and so ciza.-iz
2 _ 3777
zZ; = T (1 zan. e )
= T, <1 -z, cos(z3 + z4)> .
Solving for r, gives
2 -1
r, o= oz <1 - 7, cos(z, + z4)) ] (70)

Using this expression for r, and solving the definition of Z for élo with the
appropriate substitutions gives
- . - .. - -3
z, = jrn(qoqo+qoqo)-£rnqo(qoro)—0 (71)
i.e,, z1 18 constant,
Now,

iz
qo(ro + iro'z3)e 3

e
¢

r t o+ irl s, .
o o o 3

Taking the imaginary part gives

z1 = ro z3
Lz = z r_2
"3 7 %170
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Now
‘iz3 _
Z = iz, e + iz, r
.y Lz ' iz3 -2
= iz;r_ e +1z1(-e ro)-o .
“-iz
But Z = z,0 , hence,
iz = 0, 54 = 0 . (72)
We now introduce
t
-2
s =fz1r0 ar (73)
o
b -2 2.2 -1 _
and so zy = z3t = zlro = zlro ro z, = 1,

We now denote the initial value of z by z , so we may write, from
Equations (66), (67) and (68)

We take %3 = %4 = 0 and z, = €, 0 < €<1, Using these values to calcu-
late r and rg gives
min max
r -22a-t =22+t
o 1 o 1
max min
But r, . Omin = 2a, and so
02 2 ‘1
a, = 2z (1 -€7) .,
The representation we have chosen for our solution requires that a = 1,
8o we must choose
z? = (1 - €2),
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We see then that
1r3 (1 -€Y s

= Tr e = e .
qo o l - €coss

To complete the proof that our chosen representation is a solution, we need

an expression for t, We have, on differentiating Equation (70),

and so 5
03
t = z; f(l -~ €cosg) de,
o
ioelp S
2. 1/2 -2
t = (1 - €) f(l - €coso) do, (75)
o

as we required,

The next task is to find a coordinate system in which both m, and m,
are at rest, We choose Xy, X3 as coordinates in the plane of motion of the

massive bodies, and put

i) L - '
qj = x(l‘]) + 1x‘2") (j=1,2) .
Then
= - q. = x - q.|% + xz} (76)
IR L I A L T
where X3 forms a mutually perpendicular right triad with Xy and x,. What

we have done then is put x = xy + ixz for the first two coordinates of
q = (xl‘ X5+ X3). The now complex numbers q;, g, have been computed from

q, of Equation (67),

We now write the three scalar equations from 3 in Lagrangian form,

To this end, we define
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1 foz .2 .2\, ™, ™
L_-Z-(x1+x2+x3)+—r~—+r— (77)
1 2
which gives
SL, =L (k=1,2,3) (78)
k k
2 2 1/2
as the equations of motion, where r; = {\x + mz‘ + x3} and
> 1/2
r, = {lx - mll + x3} . We verify this by direct substitution from

Equation (77),

We have that L"‘k = )'ck and ., LHS of Equation (77) is just Sék .
m m
T _ o1 _JADY 2 _ f2) _
Sexy = L= ;-3- (xk Xy ) -;T(xk Xy (k = 1,2)
1 2

which is just the kth (k = 1,2) component of Equation (64), and

m m
i S
xs“x3‘ T ¥3 7 73 *3-
3 T2

We must now apply the transformation theory that we have studied, First
we note the explicit dependence of L on t through the G « We introduce

the transformation
X = 956, X3 = T 8
%
where § = §, +i§,. We define L by

L = L6 6 = L (g 6 0) = Llage (e,

Now from Equation (77)

.

L = %“qoe * qoélz * <ro€3 * r06.3)2% * ?L u

o
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where, recall, r, = lqol and, now,

m m
U 1

2
- +
\/(41"“’2)2*’53’”52 \/(51'"‘1)2*62“52

The purpose of this transformation was to bring the two massive particles,

m,, m,, torest, Now from Equations (66), we have

4 = "My 9 T MY,

and so quI = -m,q_, qoez = m;q yielding 61 = -m,, 62 =m, .

We have then fixed the massive particles and so we have fixed the singularities,
This transformation may be looked upon as transforming the relative motion

of m, and m, to an equilibrium motion, Geometrically, we now have a

pulsating and a non-uniformly rotating coordinate system,

Finally, we perform a time transformation to s by using

2 -1

t’ = r oz, = p>0

which also defines p. Notice that

2 r2

-Q—- = -Q-— = --__o

z 2 2

1 r z

o 1

and that we denote dependence on s by ~ and by / we mean d/ds, S0

that

~

o = Loy £ =305

where ¢ has components €1 62. €3 .

The new Lagrangian is

i
[
r?
-™N
n

T = f-l- L* (?,-;;Z’. t(s))
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and on performing the necessary operations, we obtain

d ~ d {1 _= 2 $( d _x
— L,/ = —{—1L; } = 2= Ly
ds €k ds 3z1 €k z, dt fk
= fl-lgz = Ty .
‘1 Ok Kk

Our particular choice of Lagrangian has preserved the form of the Lagrange

equations, Explicitly our new Lagrangian is

2 ) 2
1 ’ ’ 1
= —Q—zzl {‘qéé + qoefl .p_z *(rl 8y + r _¢)) ——pz} + —Q——zlro U . (79)

We now put

P = a = (1 - Gcos(p)-1

a function of 8, We bring aU to the left hand side of Equation (79), and then

expand the right hand side, remembering that q, and £ are complex numbers,

to give
Lo-aU= o ool [817 # Jao| [ 4717 + 2Re Gy a8 + 25745
o

2 ’2 ’, /

tr, éL3 +2r0 o 63 &3

/|2 7\%
_f1 l 2,2y, 1] % ! 2 1[0 ,2
"{7 &1+ & } tz|E el? + z\r_ /) %3

r/

* ?S (535; gyt 525£>

+ 616y - 6,4] .

We have calculated Re ﬁoqé E’g in the following way., Recall that
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S = or i +irs
%% = Tofo o 23
iz
since q, = T, e , and z4 = 8, Introducing p into this equation gives
1

r T +ir2 -
oo o P

e
(o)
1]

which, on multiplying by p gives, on the left hand side, El'oqc:, and for the

first term on the right hand side, roré. Using this gives
_ - 2 -
— y / 7 V4 7
Re § qpé& = r 1] Reé§ + r_ ﬁnf& .

Recall that £ = 61 + ifz and hence &= 61’ + i éé and E: 61 - iEz , which

allows us to write

Re G 48" = 7,r) (&6 + &a83) + xo (6185 - 624D

which we have used in Equation (80), Expanding the expressions on the right

hand side of Equation (80) even further, gives

A LA AR TR S AL

\2
1 /T 2,2 2
+‘z‘<‘r2> (6] + 65 + §3)

0
r”/
o] ’ ’ /
N (6161 + 82 * &363) . (81)
Now, from 'cjo = -qor;3 , we obtain the first integral

.12
%lqo‘ -;!;:ho ‘

. is
Now, qé = (r(’)+1ro)e , so that
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1.2, 2 1
h, = 2p (xg * 75 T

and finally on multiplying by pz/ri » we have, on rearranging and transporting

2
r’ 2 2
1
%...2_0 - - (82)
r T r
(o] (0] (o]

1 1.
But we have established in Section 2.3, that h = - 55— = % in our case, We

now put » )
1 2
R = 7(61 + 62 + 53)
and so (83)

4

R™ = §47% &85 + &3¢7.

Using Equations (82) and (83) allows us to write Equation (81) as
2

1 1){%o _ %o 1 %o 1 2 , 1,2
’ /
L-a(U+zR) = g\ -7 Rz Rt gv+§é+ 464 - 765,
z z o
1 1
2 /
. 1[50 Yo 1 Yo ,
We would like to drop the term > |- - — JR + 5 — R} from the
Z, z, 0
t\vi 1 )

Lagrangian, To do so, we need the following theorem:
Lagrangians differing only by the total time derivative of a well
behaved function of x and t give rise to equivalent Lagrangian systems,

This may be looked upon as a uniqueness theorem, We must now prove this,

Consider two Lagrangians, f(x, x, t) and g(x, %, t), differing by a total

time derivative h(x, t), We may write f = g + h, Now
n
ho= ,};1 (e ;) + by,

and so
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n
fo=Lxg+dit(ﬁ.)-thxfc - b,
Kk K i LTS B o A *x
n
d
- L ogt = (n ) - ). h._ % -h
Xy dt X by xjka txk
n n
=L g+ h x, - %, +h_ - h
Xy i=1 X ) =1 xjka xkt txk
= Lng

provided the order of differentiation can be reversed,

1){% rg 1 ré '
To drop the expression il - =3 |R -3 - R’} , we must show
z, zy o

that it is the total time derivative of some function of { and s for these
correspond to the x and t of our theorem, Now, factoring out the ro/zf

from the first term gives

r
° . T’/ ) T
~2 1 - )R+ %o o, _ Yo i 2 2,2
22° ° 5p- R = —3 (L= r )] + & +4&5)
1 o Zz.1
rl

oo (68 + 6k + £36)

on substituting for R and R’, If the above expression is to be h’ then we

must have

r’/ (1 -r)r
2 2 2
hy, = —2¢, h = —s 0 0" 4% 4 £7)
é'k r k s 2z, 1 2 3
and hence
r/

ho= o> (6] + 65+ €3)
(o]
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For this to be so, we need

AR
) =z )
o k4

To show that this is so, we note that the energy intergal, Equation (82},

may be written as

2
1.2 1721 1 1
Ttz 2 r 7 M 7 T2
o o
Recall that 2
’ To
t = p - ;—I-
so that
/7
rz = (l" _1_ 2 - rozl
o t’ - rz .
o

N

lo

,2
r r r
1{o} , 1. o _ _1
2 \r 2 2 2 :
\ O Z .,

z
13

= N

We have then as our final Lagrangian

1 2 ’ ’ 1,2 1
3V + 6162 5251 - '2'6 + a(U'*'Z'R)

Ca

2 - 12 /2 /2
where v© = §,7 + §, +é3 .

We now transform to the Hamiltonian form in precisely the way described
in Section 2.1, Our interest lies in periodic solutions in the plane of motion
of the massive bodies, We make the restriction to two dimensions on putting

63 = f?: = 0, As before, the canonical momentum is derived to be
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<
1

1 iéi (4 ¢ 8 § - &

[
It

'72 Eeé (E' é’p s) 62’ + €1 .

We solve this pair of equations for f;, 62' , so that

’ /
o= Mty b =Myt gy
Following the scheme given in Section 2.1, we put

2

and so
H = %[(nl F eyt £ - a@ g (€0 e?_))] :
Our equations of motion are now obtainable as
51: = an, n{(: -H6 (k=1,2).

k

This is as far as we need take the elliptic restricted three-body
problem, for at this point, we are ready to discuss the existence of periodic

solutions,

2,5 PERIODIC SOLUTIONS OF THE RESTRICTED THREE-BODY PROBLEM

To reduce the elliptic restricted three-body problem to the (circular)
restricted problem, we set € = 0, which yields a(s)=1 and t = s, The

Hamiltonian is

H = [(yl +x,)0 4 (y, - xl)z] U -3+ x5 (84)

L
2
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lx+m21 +lx-ml

where U = . The equations of motion are of the

Hamiltonian form, namely,

= - H (k=1,2), (85)
k

Now, if we put x = x, + ixz (i2 = -1), we may write Equation (85) as

1

x+rr12 x--m1
X+ 2ix+x = -my ———F - m, ———— (86)
x+m2' !x-rnli

It is periodic solutions of this equation that are of interest, We must state

what we mean by a periodic solution, Formally, we call a function f(t)

periodic in t if for some T, f(t+ T) = f(t) for all t, Later, we shall see

that there are equivalent conditions for periodicity that are more useful for

our purpose, We shall prove and use the following periodicity conditions, that if
flo) = f(r) and fo) = f(T) then f(t + T) = f(t) for all t. The converse
also holds, so our periodicity condition is equivalent to our definition, Further,
to bring our notation in line with that of current literature, we put m, = o,

m1=1-[l=[1*,

We now survey briefly the classes of periodic solutions known to
exist, These solutions are not necessarily known even in implicit form, but

just that such solutions do in fact exist,

1, The Libration Points, These are the equilibrium solutions of

' Equation (84) and are readily shown to be five in number; three
on the real axis separated by m] and m3, and one each side
of the real axis, forming an equilateral triangle with m; and
mz.

2, Motions near the triangular libration points, Eigenvalues of
the matrix of second partials evaluated at the appropriate
libration point are all purely imaginary,

3. Motions near the libration points on the real axis, Here, at
least one eigenvalue is real, and at least one is imaginary.
These libration points are, then, unstable, but some periodic
solutions exists for properly chosen initial conditions,
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4. (x| > 1, Intuitively, we suspect that periodic solutions do
exist, since we may look upon this case as a perturbation of
the two-body problem, The existence of almost circular orbits
can be proved,

5. P3 very near m] or mj, again, can be regarded as a pertur-
bation of the two-body problem,

6, m, << 1, This is almost the two-body problem, even for Pj
ncar my, We call this case the planetary case of the restricted
three-body problem, with mj = Sun, my = Jupiter, and P3
being some other planet, If P3 remains close to m,, we call
this the lunar case, Notonly go periodic solutions exist, but
also almost periodic solutions, but the proof is possibly some-
what more difficult,

We shall prove the existence of periodic solutions for the cases of most
interest to us, These are classes 5) and 6), We shall now prove the existence

of periodic orbits of class 6),

Out first step is to move the origin to one of the masses., We choose

m, and define

u = x - m,,
sk
and put m, = 4, m, =1 - 4 =/, Substituting into Equation (86) gives
.. . *
u + 2iu - u + 4 F(u) =y(1-F(l+u)) (87)

where F(u) = u/ lul?’ . We call the right hand side of Equation (87) the disturbing
"force" or function, If M = 0, then, the right hand side is zero, We notice

also that the left hand side — o as u —» 0,

As we have indicated earlier, a more suitable periodicity condition
must be introduced, The periodicity condition that we require is that if a
solution cuts the & axis orthogonally at two distinct times, then, the solution
is periodic, We must now prove this, We choose the axes and our time -
origin, so that Pj lies on the § axis at a perpendicular crossing. At t=0,

we have that
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z(t) = Z(t), z(t) = -z(t). (88)

Now, if at some later time, t; > 0, Equation (88) holds, we shall prove that

the solution is periodic, We introduce

V(t) = F(2t, - t), (89)

and so, V{t)

u

-7 (Zto - t).
We now wish to show that our differential Equation (86) becomes
s D sk
V(t) + 2iV(t) + 4 F(V) = u<1 - F(1 + V)) . (90)
Using Equation (89) and conjugating this reduces to

Tiet, - t) - 2iE(2t - t) - (2t - t) + u* F (E(Zto - t))

cui-F ez, - n)),

Now
Vit) = Z(t) = =z(t ), V(L) = -Z(t) = z(t)

where we must consider V(t), z(t) solutions of the appropriate differential
equations, and coinside in position and velocity at one time point, Hence,.

V(t) = z(t) identically, and
z(Zto) = Z({o) = z (o). (91)
By a similar argument, we obtain that
5(t) = -z(2t - t)

and, therefore,

z(2t) = -%(0) = z{o). (92)
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Since the differential equation is autonomous, z(Zto +t) = z(t), and so the
period is Zto, If we have two perpendicular crossings of the real axis, then

the solution is periodic, and we have
z (-t) = Z(t),

and we see that the trajectory is symmetric about the real axis, We have

only a sufficient condition,

Now, z is a function of 4, and, of course, of the initial conditions,
We may show this function dependence, and at t = to’ we have

fm z(to, z

o’ Zo H) = 0 = Re z(to, z, zo.u).

-

Out intent is to continue analytically the Keplerian solutions obtained for

U =0, so first we ask: Does the Kepler problem admit periodic solutions
with two perpendicular crossing? It does, and in particular, for suitably
chosen axes, elliptic orbits have two perpendicular crossings, This elliptic

case for 4 = 0 is the one we require,

The coordinate system that we have is not practical, so first we put

”_*1/3x
and obtain
X + 2ix - x + F(x) = pu*1/3 (1 - F(1 + u* 1/3x)) = Q(x) (93)

If we now put U = 0, the left hand side is just the Kepler problem. As we

shall now see, the Kepler motion is simpler,

We define z; through z, as follows:

z, = ,';mi'(fc-{- ix), z, = |z, z, = arcx + z,, %z = -arcZ (94)
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xr b4 iz, (x+ix) and r = |x|. These variables are called

where Z
the elliptic elements, We now wish to express x and r = [x| in terms of
z through Z4. Multiplying Z by x gives

XZ = r + izli(ic + ix).

From the definitions
x = ret(#3724) (95)

80 we may write

and so

zi‘ )
r = TP =z (1 - zZ, coez3). (96)
()
1 - Rele
Now .
i o= Im R+ ix) + $m% (% + ix%)

1

Fm(iXx + X% + ii;'c) = FmR( + 2i%)
since -g'm(-i:'c'i) = %n(i;c_x) = Qcmi;'ci
Now, since Xx and XF(x) are both real, we may write

2, = PmR(E + 2i% - x + F(x)) = dmxQ
from Equation (93), Differentiating Equation (94) gives

i{z,-2z,)
(F +ir (kg - By))e 3 4

.
u

and so

. . L2, .
XX = rr + ir (z3 z4),
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and

Zy -
. i{z3-24)
Now, on using x =re , we obtain eventually that

Z +iZ = iz, Q + i(X + ix)z,
) . . -iz4
= (z2 + iz2 - iz2z4)e (97)
-iz4
since Z = z, e . We now define

S = ile + i()i + 1x) z'1.
iz4
Multiplying Equation (97) by e and taking real and imaginary parts

gives

and eventually i
z =1-z£1§'m;5e 4§.

%4
Using this gives _
- ?1r-2 < 23! $m gs e1z4§ .

We have, with

B = fm %O (98)

four differential equations for z) through Zg e
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Next, we introduce the new independent variable

8 -_-ler-zdt. (99)

f’ = gf— = El.£r2 _1

ds s %1

We now write our four differential equations for z; through z, in the form '

z’ = a(z) + p(z) (100)

where z, a, p are each column vectors with elements Z.s 355 Py i=1,...,4)

respectively, and al(z) = az(z) = 0, a3(z) =1, a4(z) = rzzil = t’,

_ - o - _ -1
Py = 3y mxqQ, p, = a4ReP, Py = Py = 34%; ﬁmP

and finally,
iz
e 4 Q. (101)

iz
P = z-l-1 (e 3. zz) J{miQ - izl

Now Q appears only in the definition of P, and so in p, . The vector a is

independent of Q. If Q = 0 (i.e., 4 = 0), then p = 0, and we have the Kepler

problem:

z’ = a(z).

From our existence theorem, we know a solution

z = @(s,{)

exists and is holomorphic in both s and { within some region, On inspection

of a(z), we see that the solution is
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-~

¢p = by 9y = b 93 = {3 s,

8
Py = {4 +{'? f(l - Czcos(g‘:,’ + a))-zda
o

This is the solution of the unperturbed system, which is the Kepler problem,

in a rotating coordinate system,

We must now write the periodicity condition in terms of x, The form

is the same, since we have only a scale change, The conditions are the

%nx(to, X >'co) = 0, g"mx0

i
o

R,e)'c(to, X s xo) = 0, Rex = 0, (102)

Now, we have that
1(4‘3'4‘4)
X = r e
o )

since Ci is the initial value of z. and so C3 - C4 = 0, modulo . We choose
C3 = {'4 = 0, Now

. . -1( Mlzy o tilzgmzg)y
X + 1x = -1z z2 e e

and so, initially, we have
x +ix = -1t - 1) (103)
o o 1 2 *

We can now simplify the equations., We may write

L1 il
x = 8 - Geossy e 4

The initial conditions {'3 and C4 have been chosen zero, so we must now choose

tl' {'2 in such a way that x describes an ellipse. Now, ¢, =t, and so

xe]‘t = {? (1 - CZ cos s)m1 e*? .
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But xelt represents a vector in a rotating coordinate system, Putting CZ =€,

we see that {, determines the major axis, We have that

1
s

3 -2

t = {'1 (1 - €coss) " ds (104)
o
which we can integrate if s = 27 to give the period, T, say:

3 5 -3/2

T, = 27 tl (1 - €%) (105)

. . . it .
Now, in the rotating coordinate system, the vector xe'’ has not necessarily

returned to its initial position.

The factor e'’ has a period 2m and the other factor, a period of To'

We require that one differs from the other by a rational factor, i.e.,
2Tm = Tok (106)

for some integers m and k, We call this relation a commensurability
condition, or say that the period To is commensurable with 27, Now,
on ensuring that Equations (105) and (106) are statisfied simultaneously, the

relation

3/2
(;f =20 - €?) (107)

must be satisfied, which we look upon as a condition upon Zl . The particle
will make k -m circuits about the origin before it closes its orbit,

Now at time t_, x is real, and x is purely imaginary, and to itself
is equal to mm. The values of {‘i (i=1,...,4) so chosen above, and
satisfying Equation (107) do indeed give us a solution, We now put a *
superscript on ¢ and its components to show that it is initial conditions for
a periodic solution when # = 0, We have ensured that the periodicity
conditions are satisfied, To be able to analytically continue this solution to

sufficiently small 4 >0, we must have some Jacobian J ;é 0.
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Our periodicity condition requires that if s =s_ at t =t_, then
Z3(S, 4'1' ;2' ”) = 7k, Z4 = Tm

at s =8 and for {'3 = 4"4 = 0, The problem is to satisfy these two equations
simultaneously for U # 0, They are satisfied for s’; = k.

We now compute the Jacobian of Z3 2y with respect to s, 4'2 on the
perpendicular solution, and evaluate at the initial conditions for u = 0. We

shall find that the only non-vanishing Jacobian is

0 (ZZ' z4)

9(s, ¢,)
2 (S=S:§o 4.:{*' ”=0)

where C* = ({'”1‘ , C:, 0, 0)., We may assume we have a true ellipse and so
0< €< 1, Recall that the Equation (100) satisfies the conditions of general
existence theorem for solutions to systems differential equations, From
this, we deduce that solutions of Equation (100) are continuous and differen-
tiable functions of all their variables and parameters, In particular, the

solutions are holomorphic functions of u,

Now the solution to the unperturbed system, i.,e,, Equation (100) with

M =0, is
S
»3 -2
('01 = Cl. @, = 4.2: (P3 = B, Yg4 = S1 f (- :2 coso) do.
o

These give
.1 H9y-s)
x = ;? (1 - 4'2 cos s) 1, 4 . (108)

Now, we want x to be periodic, As before, we let

r = |x| = (? (1 - CZ coss)-l,
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and if {'2 = 0 and

904 a s
3 i(l-:?)s
since <p4=¢ls e , and
. 3
3 l(l'cl)s
x = e
1 .
In this case, x is always a periodic function of 8, We next define S = 2"3
. 1 - c
1

if 4’1 ;4 1., Note that Cl = 1 gives the circular solution, For the elliptic

case, we require 0 < ¢, < 1,
Now consider

8 ,
afs) = s - ¢, = 8 - C:: / (1 - ¢2 ':°$0)“2 do . (109)
o

s is increased by a multiple of 27, and we require that s - Py increases by

"~ an integral value of 2w, That s - increases by an integral value of 27
g 994 g

is not so necessarily, but conditionally, We want

3 2.3/2
a(27k) = 27wk - tl 2mk(l - {3) = 27n (110)

for some integers k, n, We have a condition, Equation (107), on Cl, CZ which

may be written as

-3/2
k&‘;’ (- zg) = k-n=m, (111)

and we notice, on choosing 0 < 4‘2 < 1 and computing {‘1 from Equation (111),
that for g’l, CZ so chosen, Equation (110) is automatically satisfied, As s goes
from 0 to 27k, r makes k revolutions about the ellipse (in fixed coordinates),
and encircles the origin k- m times, to close the figure in rotating coordinate
system, The figure in the rotating coordinate system is a precessing ellipse,
We may assume that m is chosen positive, since we can obtain all cases on

letting k take positive or negative values, The ratio m/k is the type of

elliptic orbit,
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One remaining point of interest is where the second orthogonal crossing
of the real axis occurs, We assume k and m have no common factors, so that
t, = mm, §_ = mk, Putting these values in Equation (108) yields that the
exponential term is real, and so we are again on the real axis, Further, we

see that x is purely imaginary, All this has been done for ¢ =0,

We now want to see if the conditions we have, namely zq = k,

Z4 7m at t=t_ , and initially
2 ema-
1~ k 2 '
{, = € can be satisfied if u #0, For this, we require the implicit function
2 q P

theorem which states:

If the equations
fk(xl""'xn' Yl""'ym) = 0 (k= 1,...,n)

is satisfied for the particular values

* ¥* *

% Tk
8 = (x1’~o-|xn! Yl"'l!y

m

)

and if the functional determinant & (fl' ceo ,fn)/& (xl, ces ,xn) Z 0 in some
domain combining s*, then we can find
X = O ypeennyy) (k=1,...,n)
such that
£ 000k eeey @ (V) yyseeewy ) = 0 (k=1,...,n)

y = (yl,...,ym). Now, if we can say that a(fl,...,fn)/a(xl,...,xn) ;é 0

at s" only, then we can solve for the x's as functions of y's only so long
as (yys...,y,) is sufficiently close to ¥, i.e., |y - v'| is sufficiently

small, provided the fl’ ..+, 5, satisfy certain continuity conditions,

n
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We now apply this with Zy) Z, a8 the f's and s, CZ as the x's, The
y's willbe {; and g. We have no need to vary Cl, since we can do this
with a suitable variation in ;2' We do want to vary u so that u # 0. The
implicit function theorem can be applied if 9 (z3, z4)/6 (s, 4’2) # 0, This

determinant is

0

4{2

£ 0

0 z
provided z4¢2 ;( 0., Now
s
3 -
2y = &) /(1 - §, cosg) 2 40
o
and so

24¢

s
3 -
5 = -tl /(1 - &'Zcosa) 3cosd do.
o

We must ensure that this condition is satisfied, If it is then, we can analytically

continue our elliptical Keplerians solutions for sufficiently small u >0,

2,6 STABILITY METHODS

We begin the discussion of this topic with a definition of stability
(Reference 3) for periddic solutions of a Hamiltonian system, The res-
trictions to Hamiltonian systems and periodic motions is no limitation in
the case of the restricted problem of three bodies with which we shall be

principally concerned., To fix ideas, let us consider a Hamiltonian system

:'ck = EY , irk = - (k=1,...,n) (112)
and let

X = X(t, 69 77). y = Y(ts 6' 7]) (113)
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to be a periodic solution of Equation {112) such that ¢ = x(0, §, n), n = y(0, &, 7).
For this solution, we set E =Y and define R and U as follows: R is the

domain of the real x-y space, of dimension 2n, on which E_ , Ex (k=1, ..., n)
k k

are uniformly Lipschitz continuous, and R contains our periodic solution
x = x(t), y = y(t); and by U we denote any open subset of R which is also a
neighborhood of our selected periodic solution (113), By introducing Uy, the

intersection of the neighborhood U with the surface E = ¥, we have a 2n-1

dimensional neighborhood of the intersection, ay, of our periodic solution
with the hypersurface E = Y, We then speak of stability of a conservative
system at a periodic solution if for each neighborhood Uy of the given
periodic solution there exists another neighborhood Vy such that all the
intersections of the trajectory through any point of Vy and the surface

E =7 lie in Uy, We say that the solution is unstable if the only point set
satisfying the above requirement is ay itself, If neither hold, then we

say that the stability is mixed,

Now we can look upon the solutions of Equation (112) as defining a
mapping, S, on points of E =¥ with the periodic solution (113) defining
a fixed point of Sq, for some q=1,2, ..., n, nfinite, From this, we
may define stability of a mapping in the neighborhood in a similar manner,
namely, that for every neighborhood U of a fixed point of a mapping § we
require the existence of a neighborhood V such that all the images,
including images of the inverse mapping, lie in U, Instability and the

mixed case is defined in a similar way,
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We now deduce one simple consequence of our definitions, i.e., to be
stable, a mapping must have an invariant neighborhood of the fixed point,
The proof of this is given by Siegel (Reference 3) as follows, Now if there
exists an invariant neighborhood V C U for every U, then the mapping is
stable for all the images of points of V lie in U since V C U, We now suppose
the mapping stable, and let D C U be a neighborhood of the fixed point such

that D, =S"D C U for all n = +l, 2, ... . Then the set

v

VD C U(D, = D)

is invariant under the mapping S, Clearly, for a continuous closed invariant
curve, &, containing in its interior the fixed point, a, implies that the point

set contained within & is invariant and so the mapping is stable, The

existence of such an invariant curve is, then, a sufficient condition for

stability, It is upon a theorem of Moser's concerning the existence of closed
invariant curves surrounding the fixed point, a, of a measure preserving mapping

that we shall base our stability studies,

We shall now review the tools available to study the stabilify of periodic
solutions of the restricted problem of three bodies, The three most important
are Area Preserving Mappings, the Normal Form of the Hamiltonian and the

Reduction of Perturbations,

2,6.1 Area Preserving Mappings

Within this appendix, we shall introduce the principles of area-preserving
mappings as tools in the study of stability problems of periodic solutions of the

restricted three-body problem. Now, we know that the solutions x = x(t, §, 1),
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y = y(t, &, n), where § = x(0, &,-7m), N = y(0, & 1), of a Hamiltonian system
x - Hy, vy - -H, define a mapping of the initial conditions, §, n onto the point
(x, y) in phase space (Reference 3), The equations of motion of the massless
particle of the restricted three-body problem may be expressed in Hamiltonian

form as follows:

x, = E_, y.. = -E k=1,2) 114)
X1 Y % ( ( )

[(xl - 1%+ xg]u‘z

[(x1 + u)z + xg]l/z

Now, for a sensiblemotion, at least one of the EYk or Exk ;! 0 (k= 1,"2),
initially, and using this fact and the Jacobi integral, we can reduce this
mapping, near a periodic solution, to a mapping, s, of a neighborhood of

a two-dimensional plane in phase space into another neighborhood of the

plane and s is area preserving, This result is of such fundamental

importance that, perhaps, we should establish it, We require the existence
of a periodic solution, and such has been shown to exist by methods of

analytical continuation (References 2, 3 and 9), Now,

| e (1 - )y + p)
E,_ =y, + - 372 - 372 (115)
[:(x1 +u - 1)y + x2] [:(x1 + u) + xz]

61



LMSC/HREC A783816

*
so that we may choose initial values ¢ = (61, €2, Nty = 0) of (xl, Xo1 V1 yz)

such that EXZ ;4 0 at t = to = 0, and we must be sufficiently close to a
periodic solution, Clearly, the position of the two massive bodies, X = 1 -4,
x, = 0 and X, = e X, = 0, are singular points and must be avoided, Now,

consider a neighborhood, B, of ¢¥* with 4"‘2‘ = 0, such that all solutions
starting in B again pierce the surface Ny, = 0 in a set B', say., Regularity
of the solutions as functions of the initial conditions ensure such a neighbor-
hood B, and B! will be a neighborhood of the trajectory with initial conditions
all those points being on the trajectories connecting the points of B to B!,

We now display this diagramatically,
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We now use the solutions to map this tube, which we consider as initial

conditions,into points x, We choose reasonably small t with the view of
letting t-—=0, eventually, After a time t, then, the solutions map U into
Uy, where U, is the tube commencing at B, and ending in B'l. B, and
B'l are not necessarily planar surfaces, Now, the mapping is area pre-

serving, and so

V(U) = V(U)) (116)

where V(S) is the Lebesque measure of the set S, Now let R be the subset
of U lieing between B and Bl’ and R!' be the subset of U1 , lieing between

B' and B'l. Then,

1]

V(Ul) + VR') V{U) + V(R') (117)

.. V(R)

VR') . (118)

Now, if we have chosen B suitably, we may write Equation (118) as

Jax ax, ay, dy, = fax, ax, dy, dy, . (119)
R R

Now, we use the solutions,

xk = X(t,t )s Yk = Y(t'é.) (k = 1,2; nz = ’7:)
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to transform to the new integration variables '61, €Z' n vt
This gives
X, X Y0 7Y X9 X5, V70 7Y
g2 LT "2) g¢ aé an dt=/J E 2 U 2) ag, ag, an dt,
gloﬁztnllt 1 2 1 61062' nlv
R! R

Now for t =0, i’z = -Ex2 #0 and (z;) = I, therefore J = -E

Substituting for J and dividing throughout by t gives

“Ex, “Exp
, n d€1 d£2 d’71 dt = - dgl dfz dnl dt
R R!

Now, proceeding to the limit as t » 0, we have that R—B B* - B!

and so we have
) S | 120
/Exz dx; dx, d§, = /Exz dx, dx, dg, (120)
B B!

we have reduced the dimension of the neighboi‘hood to 3 but have lost the

measure preserving quality of our mapping, We may now restore this on

using the Jacobi integral, which is just E itself, Now we choose E =7
a constant and we wish to use this to substitute for 62. The Jacobian for

this transformation is just l/Exz £o by choice of initial conditions, Our

integral then becomes
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and so

/dfldnld)' - /déldrlld)’ ) (121)
B B! .

But now, E is independent of time t and so, ona particular solution, E has the
same value when evaluated on B or B!, So we let 7 vary over the same
point set in B as in B' and then B and B' are the Cartesian product of some

set FF and F' with ¥ respectively, where F and F' have points (51, ny)

We now see that
/dfl dn, = fde1 dm (122)
F o )

and we have an area preserving mapping in the plane 7 2 = Ty and

where E =7 is solved for x, = 62 initially,

Now we know that such a mapping has a normal form and can be classified
by the determinant of the linear terms, If the mapping is hyperbolic, we know
we have instability, if elliptic, then if the substitution carrying it to the
normal form is convergent, then it is stable, However, the divergence of
this substitution does not preclude stability, From our discussion in Section

3, we recall that the existence of closed invariant curves surrounding the
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fixed point are a sufficient condition for stability. Now Moser (Reference 1)
has a theorem which concerns invariant curves to a perturbed stable area

preserving mapping. It is this, and we shall apply it to our problems,

Let there be given an area preserving mapping, Mo:

01 = 0 + a(r)
(123) -
T, =T
which we recognize as the normal form of an area preserving mapping in
plane polar coordinates x = r cosf, y = r sin®@, We call this a twist
mapping. Let
6, = 8+ afr) + £(6, r)
(124)

L ]
0]

r + g(8, r)

be a perturbation of this mapping then under certain conditions this mapping
has invariant curves near concentric circles, So far as we are immediately
concerned, his application to the restricted problem of three bodies is of

prime importance,

In References 3 and 4, the mapping near a fixed point is shown to be,

in complex form,

A =Ze1

+ F(2, Z) £(Z, Z) (125)
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where F vanishes at least quadratically at the fixed point Z = O, and

Z = x + iy, It is area preserving if

ot 1) _

AZ,Z)

Such a mapping may be transformed to
s 8
w el(@+BIWlT) | Ol( jwl9) (126)

where s is an even integer, o <s < q-1 and of importance later 8 =0, +1 or
-1, and B is independent of the choice of q >s + 1. Ignoring the error term
Ol (|w] s+2), one has a twist mapping, Moser, then shows that his theorem is
applicable and even further that the mapping is stable for 8 # 0, The

number ¢ must be such that

v a .
> £ integer v = 1,2, ...,8+%2,

We need only compute @, B8 approximately, The application to the three-body
problem, with which he follows the main result, is of particular interest to

us, He restricts his considerations to "sufficiently small py > 0." We are
interested in finite values of y , in particular gy = 1/80 for the earth-moon
system, The problem then is to establish the mappings in the form ('126) for

given values of u or ranges of p and then discuss the stability of the system,
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In this appfoach, the method of Moser (Reference 2) may be applied
directly to certain periodic solutions, e.g., first kind of Poincaré, To do this, we

must write the mapping defined by the solutions of the restricted three-body

problem in the form (References 1 and 3),

w, = w eilatBlw]®) | o, (Iwl% (127)

where s is an even integer, 0 <s < g-1, a and 8 are numbers and
B =0, +1 or -1, and is independent of the choice of 4 >s + 1, The

notation Ol( [wi q) means that for some ¢ > 1, the inequalities

+ 0
lwlp+¢7 _ip______ G < Clwls
auP svo

hold for |w| < c:-'1 and p+ o<1 where G is the perturbation of our twist
mapping (127). Now Moser (Reference 1) shows us that the mapping is stable
for 8 %0, We must compute @, f for the selected mappings and further,

these values need only be computed approximately for the only values of S

possible are 0, -1 or -1,
2.6.2 The Normal Form of the Hamiltonian
The second method useful in the study of Hamiltonian systems is

the normalization of the Hamiltonian, The most recent development is due

to Arnold (Reference 5) and is of particular interest for equilibrium solutions,
P q
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e.g., the libration points Lj,, Lg of the restricted three-body problem.,
Birkhoff (Reference 6) has shown that the Hamiltonian can be written in the

form

2 2 2 2
K = A Xy + A%y, v axpyp +Bxy; X7, + VX7, + .0 (128)

Now Arnold's theorem states that if

1, }‘l and A, are purely imaginary

2, )\1/)\2 q: m where m is some set of measure zero on the real axis,

. - 2 2
3. = aA; 4+ BAA, + VA £ o

then the equilibrium solution X] =Y =%, =Yy, = 0 is stable, This theprem
has been applied to the equilateral libration points of the restricted three-
body problem by Leontovi¢ (Reference 7), This method does not appear to
have a direct application to the problems we wish to study although there

may be an application to the study of the rate of growth of the divergence of

motions near L 1

2,6.3 The Reduction of Perturbations

Tasks 3 and 4 are intended to find the deviation of perturbed motions
from the nominal after a finite time, One method is to use a digital computer
and generate these motions numerically, buf: the computed behavior is not
proof, only an indication of the nature of the motion, However, it may be

possible to use Arenstorf's Reduction of Perturbation method (Reference 8).
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To use this method, we must be able to write our system of differential
equations as a perturbation of a system with a known solution, A time-
dependent coordinate transformation is then performed iteratively to reduce
the perturbed system to the basic system, It is thought that this method
rhay be used to compute the decay of certain periodic solutions of the

three-body problem under the perturbing influence of a fourth body, A

' computer program and plot output would effectively display the nature of the

decay of such an orbit.
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